skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rhim, Jungsoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous manufacturing in pharmaceutical industries has shown great promise to achieve process intensification. To better understand and justify such changes to the current status quo, a technoeconomic analysis of a continuous production must be conducted to serve as a predictive decision-making tool for manufacturers. This paper uses PharmaPy, a custom-made Python-based library developed for pharmaceutical flowsheet analysis, to simulate an annual production cycle for a given active pharmaceutical ingredient (API) of varying production volumes for a batch crystallization system and a continuous mixed suspension, mixed product removal (MSMPR) crystallizer. After each system is optimized, the generalized cost drivers, categorized as capital expenses (CAPEX) or operational expenses (OPEX), are compared. Then, a technoeconomic and sustainability cost analysis is done with the process mass intensity (PMI) as a green metric. The results indicate that while the batch system does have an overall lower cost and better PMI metric at smaller manufacturing scales in comparison with the continuous system, the latter system showed more potential for scaling-up for larger production volumes. 
    more » « less